IEEE 802.11 medium access control enhancements based on simultaneous multiple-input multiple-output bandwidth sharing

نویسندگان

  • Abduladhim Ashtaiwi
  • Ahmed Iyanda Sulyman
  • Hossam S. Hassanein
چکیده

The demand for higher data rate has spurred the adoption of multiple-input multiple-output (MIMO) transmission techniques in IEEE 802.11 products. MIMO techniques provide an additional spatial dimension that can significantly increase the channel capacity. A number of multiuser MIMO system have been proposed, where the multiple antenna at the physical layer are employed for multiuser access, allowing multiple users to share the same bandwidth. As these MIMO physical layer technologies further evolve, the usable bandwidth per application increases; hence, the average service time per application decreases. However, in the IEEE 802.11 distributed coordination function-based systems, a considerable amount of bandwidth is wasted during the medium access and coordination process. Therefore, as the usable bandwidth is enhanced using MIMO technology, the bandwidth wastage of medium access and coordination becomes a significant performance bottleneck. Hence, there is a fundamental need for bandwidth sharing schemes at the medium access control (MAC) layer where multiple connections can concurrently use the increased bandwidth provided by the physical layer MIMO technologies. In this paper, we propose the MIMO-aware rate splitting (MRS) MAC protocol and examine its behavior under different scenarios. MRS is a distributed MAC protocol where nodes locally cooperate with one another to share bandwidth via splitting the spatial channels of MIMO systems. Simulation results of MRS protocol are obtained and compared with those of IEEE 802.11n protocol. We show that our proposed MRS scheme can significantly outperform the IEEE 802.11n in medium access delay and throughput. Copyright © 2012 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIMO-aware Medium Access Control in IEEE 802.11 Networks

Wireless Mesh Networks (WMNs) are dynamically self-organized and self-configured, where the nodes in the network automatically establish an ad hoc network and maintain mesh connectivity. These properties make WMNs a key technology for nextgeneration wireless networking. However, supporting Quality of Service (QoS) to enable multimedia services is still one of the major issues in next-generation...

متن کامل

Performance Analysis of the IEEE 802.11 Distributed Coordination Function: Bianchi Model

Currently, IEEE 802.11 is the de facto standard for WLANs [1]. It specifies both the medium access control and the physical layers for WLANs. The scope of IEEE 802.11 working groups (WGs) is to propose and develop MAC and PHY layer specifications for WLAN to handle mobile and portable stations. In this standard, the MAC layer operates on top of one of several possible physical layers. Medium ac...

متن کامل

DBASE : A Distributed Bandwidth Allocation/Sharing/Extension Protocol for Multimedia over IEEE 802.11 Ad Hoc Wireless LAN

In ad hoc networks, carrier sense multiple access (CSMA) is one of the most pervasive medium access control (MAC) schemes for asynchronous data traffics. However, CSMA could not guarantee the quality of real-time traffics. In this paper, we will propose a distributed bandwidth allocation/sharing/extension (DBASE) protocol to support multimedia traffics with the characteristics of variable bit r...

متن کامل

Distributed Medium Access Control with SDMA Support for WLANs

SUMMARY With simultaneous multiuser transmissions, spatial division multiple access (SDMA) provides substantial throughput gain over the single user transmission. However, its implementation in WLANs with contention-based IEEE 802.11 MAC remains challenging. Problems such as coordinating and synchronizing the multiple users need to be solved in a distributed way. In this paper, we propose a dis...

متن کامل

Impact of IEEE 802.11n/ac PHY/MAC High Throughput Enhancements over Transport/Application Layer Protocols - A Survey

Since the inception of Wireless Local Area Networks (WLANs) in the year 1997, it has tremendously grown in the last few years. IEEE 802.11 is popularly known as WLAN. To provide the last mile wireless broadband connectivity to users, IEEE 802.11 is enriched with IEEE 802.11a, IEEE 802.11b and IEEE 802.11g. More recently, IEEE 802.11n, IEEE 802.11ac and IEEE 802.11ad are introduced with enhancem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Wireless Communications and Mobile Computing

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014